Coarse-grained, density dependent implicit solvent model reliably reproduces behavior of a model surfactant system.

نویسندگان

  • Erik C Allen
  • Gregory C Rutledge
چکیده

Density dependent, implicit solvent (DDIS) potentials, the generation of which has been described previously [E. C. Allen and G. C. Rutledge, J. Chem. Phys. 128, 154115 (2008); E. C. Allen and G. C. Rutledge, J. Chem. Phys. 130, 034904 (2009)], are used in this work to examine the self-assembly of a model surfactant system. While the measurement of thermodynamic properties in simulations of solvated micelles requires large computational resources or specialized free energy calculations, the high degree of coarse-graining enabled by the DDIS algorithm allows for the measurement of critical micelle concentration and aggregation number distribution using single processor NVT simulations. In order to evaluate the transferability of potentials derived from the DDIS methodology, the potentials are derived from simulations of simple monomeric solutes and used in the surfactant system without modification. Despite the high degree of coarse graining and the simplicity of the fitting simulations, we demonstrate that the coarse-grained DDIS potentials generated by this method reliably reproduce key properties of the underlying surfactant system: the critical micelle concentration, and the average aggregation number. The success of the DDIS algorithm suggests its utility for more realistic surfactant models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Simulations of Freezing Behavior of Pure Water and 14% Water-NaCl Mixture Using the Coarse-Grained Model

 We performed molecular dynamics simulations using the coarse-grained model to study the freezing behavior of pure water and 14% water-salt mixture in a wide range of temperatures for a very long time around 50 nanoseconds. For the salty water, an interface in nanoscale was used. For both systems, the f...

متن کامل

The "sugar" coarse-grained DNA model.

More than 20 coarse-grained (CG) DNA models have been developed for simulating the behavior of this molecule under various conditions, including those required for nanotechnology. However, none of these models reproduces the DNA polymorphism associated with conformational changes in the ribose rings of the DNA backbone. These changes make an essential contribution to the DNA local deformability...

متن کامل

Reintroducing explicit solvent to a solvent-free coarse-grained model.

A unique coarse-grained modeling scheme that combines a systematic, solvent-free multiscale coarse-graining algorithm for a complex macromolecule with an existing coarse-grained solvent model is proposed. We show that this procedure efficiently and reliably describes the interactions for complex macromolecules, using the specific example of dendrimers binding phenanthrenes in water. The experim...

متن کامل

Determination of the critical micelle concentration in simulations of surfactant systems.

Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the "free" (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfact...

متن کامل

An experimental study on hydraulic behavior of free-surface radial flow in coarse-grained porous media

The equations of fluids in porous media are very useful in designing the rockfill and diversion dams, gabions, breakwaters and ground water reserves. Researches have been showed that the Forchheimer equation is not sufficient for the analysis of hydraulic behavior of free-surface radial flows; because, in these flows, in addition to the hydraulic gradient and velocity, the variable of radius is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 130 20  شماره 

صفحات  -

تاریخ انتشار 2009